首页> 外文OA文献 >From data towards knowledge: Revealing the architecture of signaling systems by unifying knowledge mining and data mining of systematic perturbation data
【2h】

From data towards knowledge: Revealing the architecture of signaling systems by unifying knowledge mining and data mining of systematic perturbation data

机译:从数据到知识:揭示信令架构   系统统一知识挖掘和数据挖掘的系统   扰动数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic and pharmacological perturbation experiments, such as deleting a geneand monitoring gene expression responses, are powerful tools for studyingcellular signal transduction pathways. However, it remains a challenge toautomatically derive knowledge of a cellular signaling system at a conceptuallevel from systematic perturbation-response data. In this study, we explored aframework that unifies knowledge mining and data mining approaches towards thegoal. The framework consists of the following automated processes: 1) applyingan ontology-driven knowledge mining approach to identify functional modulesamong the genes responding to a perturbation in order to reveal potentialsignals affected by the perturbation; 2) applying a graph-based data miningapproach to search for perturbations that affect a common signal with respectto a functional module, and 3) revealing the architecture of a signaling systemorganize signaling units into a hierarchy based on their relationships.Applying this framework to a compendium of yeast perturbation-response data, wehave successfully recovered many well-known signal transduction pathways; inaddition, our analysis have led to many hypotheses regarding the yeast signaltransduction system; finally, our analysis automatically organized perturbedgenes as a graph reflecting the architect of the yeast signaling system.Importantly, this framework transformed molecular findings from a gene level toa conceptual level, which readily can be translated into computable knowledgein the form of rules regarding the yeast signaling system, such as "if genesinvolved in MAPK signaling are perturbed, genes involved in pheromone responseswill be differentially expressed".
机译:遗传和药理学扰动实验,例如删除基因和监测基因表达反应,是研究细胞信号转导途径的有力工具。然而,从系统的摄动-响应数据自动地在概念水平上获得细胞信号系统的知识仍然是一个挑战。在这项研究中,我们探索了将目标框架的知识挖掘和数据挖掘方法统一起来的框架。该框架由以下自动化过程组成:1)应用本体驱动的知识挖掘方法,在响应扰动的基因中识别功能模块,以揭示受扰动影响的潜在信号; 2)应用基于图的数据挖掘方法来搜索对功能模块而言影响通用信号的扰动,以及3)揭示信令系统的体系结构将信令单元根据它们之间的关系组织为层次结构。酵母微扰响应数据,我们已经成功地恢复了许多众所周知的信号转导途径;另外,我们的分析导致了关于酵母信号转导系统的许多假设。最后,我们的分析自动将扰动的基因组织成一个图,以反映酵母信号系统的设计者。重要的是,该框架将分子发现从基因水平转变为概念水平,可以很容易地将其转化为关于酵母信号的规则形式的可计算知识。系统,例如“如果干扰涉及MAPK信号传导的基因,参与信息素反应的基因将被差异表达”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号